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Abstract
We introduce a generic Fröhlich–Coulomb model of the oxides, which
also includes infinite on-site (Hubbard) repulsion, and describe a simple
analytical method of solving the multi-polaron problem in complex lattice
structures. Two particular lattices, a zigzag ladder and a perovskite layer, are
studied. We find that, depending on the relative strength of the Fröhlich and
Coulomb interactions, these systems are either polaronic Fermi (or Luttinger)
liquids, bipolaronic superconductors, or charge-segregated insulators. In the
superconducting phase the carriers are superlight mobile bipolarons. The model
describes key features of the cuprates such as their Tc-values, the isotope effects,
the normal-state diamagnetism, the pseudogap, and spectral functions measured
in tunnelling and photoemission. We argue that a low Fermi energy and strong
coupling of carriers with high-frequency phonons is the cause of high critical
temperatures in novel superconductors.

(Some figures in this article are in colour only in the electronic version)

There is overwhelming experimental [1–6] and theoretical [7–10] evidence for an exceptionally
strong electron–phonon (el–ph) interaction in the cuprates, which competes with electron
correlations. In recent years, several publications addressed the fundamental problem of
competing el–ph and Coulomb interactions in the framework of the so-called Holstein–
Hubbard model [11–15], where both interactions are short range (on-site). The model describes
well many properties of the insulating state of the cuprates, including antiferromagnetism,
lattice distortions, and phase segregation. However, it could hardly account for the high value
of the superconducting critical temperature [16]. The mass of (bi)polaronic carriers in this
model is very large in the relevant parameter region, and Tc is suppressed below the Kelvin
scale.
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In choosing the correct interaction for high-temperature superconductors (HTSC), we
take into account that most of the novel superconductors are doped insulators with highly
polarizable ionic lattices. The low density of mobile carriers is unable to screen effectively
the direct Coulomb electron–ion and electron–electron interactions. The layered structure of
the cuprates reduces screening even further. Since the mobile carriers are confined to the
copper–oxygen planes their interaction with out-of-plane ions, such as the apical oxygens, is
particularly strong. A parameter-free estimate of the polaron binding energy Ep in the cuprates
puts it at about 0.5 eV or larger [17]. This strong long-range (Fröhlich) el–ph interaction
necessarily leads to formation of small polarons. Such Fröhlich small polarons were first
considered in [18]. Exact Monte Carlo simulations of the single-polaron problem [19] showed
that a long-range el–ph interaction effectively removes the difficulty with a large polaron (and
bipolaron) mass in the Holstein-type el–ph models. Indeed, the polaron is heavy because it
has to carry a lattice deformation with it which is the same deformation as forms the polaron
itself. Therefore, there exists a generic relation between Ep and the renormalization of its
mass: m ∝ exp (γEp/ω), where ω is a characteristic phonon frequency and γ ∼ 1 is a
numerical coefficient whose actual value depends on the radius of the interaction. For a short-
range el–ph interaction (Holstein) the entire lattice deformation disappears and then forms in
a new place when the polaron moves between the nearest lattice sites. Therefore, γ = 1 and
the polaron is very heavy for the characteristic cuprates values Ep ∼ 0.5 eV and ω ∼ 0.05
eV. In the case of a long-range interaction, only a fraction of the total deformation changes
every time the polaron moves and γ could be as small as 0.25 [16]. Clearly, this results in
a dramatic mass reduction since γ enters the exponent. Thus the effective mass could be
�10 me where a naive Holstein-like estimate would yield a huge mass ∼10 000 me. The above
qualitative reasoning was fully confirmed by analytical [16] and numerical (approximation-free
Monte Carlo) [19] studies of the double-chain and double-plane models with long-range el–ph
interactions. Later the single-polaron and bipolaron cases of the chain model were analysed
in more detail, in [20] and [21], respectively. These studies confirmed a much lower mass of
both polaron and bipolaron in comparison to the Holstein–Hubbard limit.

Here we argue that a consistent theory of HTSC must include both the long-range
Coulomb repulsion between the carriers and the strong long-range el–ph interaction. We
propose an analytically solvable multi-polaron model of high-temperature superconductivity
that includes these realistic long-range interactions. From the theoretical standpoint, the long-
range Coulomb repulsion is critical in ensuring that the carriers would not form large clusters.
Indeed, in order to form stable pairs (bipolarons) the el–ph interaction has to be strong enough
to overcome the Coulomb repulsion at short distances. Since the el–ph interaction is long
range, there is a potential possibility for clustering. We shall demonstrate that the inclusion
of the Coulomb repulsion Vc makes the clusters unstable. More precisely, there is a certain
window of Vc/Ep inside which the clusters are unstable but bipolarons nonetheless form. In
this parameter window the bipolarons are light and the system is a superconductor with a
high critical temperature. The bipolarons repel each other and propagate in a band of about the
same bandwidth as the single-polaron bandwidth, in sharp contrast with all bipolaronic models
considered previously. At a weaker Coulomb interaction the system is a charge-segregated
insulator. At a stronger Coulomb repulsion the system is a polaron Fermi (or Luttinger) liquid.
In the superconducting phase but close to the clustering boundary, dynamical formation of
short-lived clusters or stripes could be expected.

Our generic Fröhlich–Coulomb model explicitly includes the electron kinetic energy, the
infinite-range Coulomb and el–ph interactions, as well as the lattice energy. The implicitly
present infinite Hubbard U prohibits double occupancy and removes the need to distinguish
the fermionic spin. Introducing spinless fermion operators cn and phonon operators dmα , the
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model Hamiltonian is written as

H = −
∑
n�=n′

T (n − n′)c†
ncn′ +

∑
n�=n′

Vc(n − n′)c†
ncnc

†
n′cn′

− ω
∑
nm

gα(m − n)(emα · um−n)c†
ncn(d†

mα + dmα) + ω
∑
mα

(d†
mαdmα + 1

2 ).

(1)

We note that the el–ph term is written in real rather than momentum space. This is more
convenient in working with complex lattices. Here emα is the polarization vector of αth
vibration coordinate at site m, um−n ≡ (m − n)/|m − n| is the unit vector in the direction
from electron n to the ion m, and gα(m − n) is the dimensionless el–ph coupling function.
(gα(m − n) is proportional to the force acting between m and n). We assume that all the
phonon modes are dispersionless with frequency ω and that the electrons do not interact with
displacements of their own atoms, gα(0) ≡ 0. We also use h̄ = 1 throughout the paper.

In general, the many-body model (1) is of considerable complexity. However, we are
interested in the limit of strong el–ph interaction. In this case, the kinetic energy is a
perturbation and the model can be grossly simplified in a two-step procedure. On the first
step, the Lang–Firsov canonical transformation [22] is performed, which diagonalizes the last
three terms in equation (1). Introducing S = ∑

mnα gα(m−n)(emα ·um−n)c†
ncn(d†

mα−dmα),
one obtains the transformed Hamiltonian without an explicit el–ph term:

H̃ = e−SHeS = −
∑
n�=n′

σ̂nn′c†
ncn′ + ω

∑
mα

(d†
mαdmα + 1

2 )

+
∑
n�=n′

v(n − n′)c†
ncnc

†
n′cn′ − Ep

∑
n

c†
ncn. (2)

The last term describes the energy which polarons gain due to el–ph interaction. Ep is the
familiar polaron (Franck–Condon) shift

Ep = ω
∑
mα

g2
α(m − n)(emα · um−n)2, (3)

which we assume to be independent of n. Ep is a natural measure of the strength of the el–ph
interaction. The third term in equation (2) is the polaron–polaron interaction:

v(n − n′) = Vc(n − n′) − Vpa(n − n′), (4)

Vpa(n − n′) = 2ω
∑
mα

gα(m − n)gα(m − n′)(emα · um−n)(emα · um−n′), (5)

where Vpa is the interpolaron attraction due to joint interaction with the same vibrating atoms.
Finally, the first term in equation (2) contains the transformed hopping operator σ̂nn′ :

σ̂nn′ = T (n − n′) exp

[∑
mα

[gα(m − n)(emα · um−n)

− gα(m − n′)(emα · um−n′)](d†
mα − dmα)

]
. (6)

At large Ep/T (n − n′) this term is a perturbation. In the first order of the strong-coupling
perturbation theory [7], σ̂nn′ should be averaged over phonons because there is no coupling
between polarons and phonons in the unperturbed Hamiltonian (the last three terms in equation
(2)). For temperatures lower than ω, the result is

t (n − n′) ≡ 〈σ̂nn′ 〉ph = T (n − n′) exp[−G2(n − n′)], (7)

G2(n − n′) =
∑
mα

gα(m − n)(emα · um−n)

× [gα(m − n)(emα · um−n) − gα(m − n′)(emα · um−n′)]. (8)
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Figure 1. The mechanism of the polaron–polaron interaction. (a) Together, the two polarons (solid
circles) deform the lattice more effectively than separately. An effective attraction occurs when the
angle φ between x1 and x2 is <π/2. (b) A mixed situation. Atom 1 results in repulsion between
two polarons while atom 2 results in attraction.

By comparing equations (3) and (5) with (8), the mass renormalization exponents can be
expressed via Ep and Vpa as follows:

G2(n − n′) = 1

ω

(
Ep − 1

2
Vpa(n − n′)

)
. (9)

This results in a renormalized hopping term that represents the small parameter of a strong-
coupling perturbation theory [7]. The above technical transformation is simple and has been
described elsewhere [7] together with a detailed description of the perturbation procedure. The
resulting model is purely polaronic, in which phonons are ‘integrated out’:

Hp = H0 + Hpert, (10)

H0 = −Ep

∑
n

c†
ncn +

∑
n�=n′

v(n − n′)c†
ncnc

†
n′cn′ , (11)

Hpert = −
∑
n�=n′

t (n − n′)c†
ncn′ . (12)

When Vpa exceeds Vc the full interaction becomes negative and polarons form pairs. We
emphasize that while the above formalism fails in some regimes of the short-range el–ph
models (for instance, the adiabatic limit of the Holstein model), it is surprisingly accurate
for long-range el–ph interactions, as was demonstrated by comparing the analytical results
with exact quantum Monte Carlo data [19]. It makes theoretical analysis of even complex
interactions and lattice geometries simple and instructive. But before proceeding to analysing
concrete lattices, let us elaborate on the physics behind the lattice sums in equations (3) and (5).

When a carrier (electron or hole) acts on an ion with a force f , it displaces the ion by some
vector x = f/s. Here s is the ion’s force constant. The total energy of the carrier–ion pair is
−f 2/(2s). This is precisely the summand in equation (3) expressed via dimensionless coupling
constants. Now, consider two carriers interacting with the same ion; see figure 1(a). The ion
displacement is x = (f1 + f2)/s and the energy is −f 2

1 /(2s) − f 2
2 /(2s) − (f1 · f2)/s. The

last term here should be interpreted as an ion-mediated interaction between the two carriers.
It depends on the scalar product of f1 and f2 and consequently on the relative positions of
the carriers with respect to the ion. If the ion is an isotropic harmonic oscillator, as we
assume in this paper, then the following simple rule applies. If the angle φ between f1 and
f2 is <π/2, then the polaron–polaron interaction is attractive; otherwise it is repulsive; see
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Figure 2. The one-dimensional zigzag ladder. (a) The initial ladder with the bare hopping amplitude
T . (b) Two types of polaron with their respective deformations. (c) The two degenerate bipolaron
configurations A and B. (d) A different bipolaron configuration C whose energy is higher than that
of A and B.

figure 1(b). The overall sign and magnitude of the interaction is given by the lattice sum in
equation (5), evaluation of which is elementary. Notice also that according to equation (9),
an attractive interaction reduces the polaron mass (and consequently bipolaron mass), while
repulsive interaction enhances the mass. Thus in our model the long-range character of the el–
ph interaction serves a double purpose. Firstly, it generates additional interpolaron attraction
because the distant ions have small angles φ. This additional attraction helps overcome the
direct Coulomb repulsion between the polarons. Secondly, the Fröhlich interaction makes the
bipolarons light, leading to a high critical temperature.

The many-particle ground state of H0 depends on the sign of the polaron–polaron
interaction, the carrier density, and the lattice geometry. First we consider the zigzag ladder,
figure 2(a), assuming that all sites are isotropic two-dimensional harmonic oscillators. For
simplicity, we also adopt the nearest-neighbour approximation for both interactions, gα(l) ≡ g,
Vc(n) ≡ Vc, and for the hopping integrals, T (m) = TNN > 0 for l = n = m = a, and zero
otherwise. Hereafter we set the lattice period a = 1. There are four nearest neighbours in the
ladder; z = 4. The one-particle polaronic Hamiltonian takes the form

Hp = −
∑

n

(Ep[c†
ncn + p†

npn] + t ′[c†
n+1cn + p

†
n+1pn + h.c.] + t[p†

ncn + p
†
n−1cn + h.c.]), (13)

where cn and pn are polaronic operators on the lower and upper sides of the ladder, respectively;
see figure 2(b). Applying the general formulae (3), (5), and (9), we obtain Ep = 4g2ω,
t ′ = TNN exp[−7Ep/(8ω)], and t = TNN exp[−3Ep/(4ω)]. Fourier transformation yields
the one-particle spectrum

E1(k) = −Ep − 2t ′ cos(k) ± t cos(k/2). (14)

Two overlapping polaronic bands have a combined width of W = 4t ′ + 2t . The lower band
has the bandwidth W and the effective mass m∗

l = 2/(4t ′ + t) near the bottom, while the upper
band has the bandwidth 4t ′ − 2t and a heavier mass m∗

u = 2/(4t ′ − t).
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Let us now place two polarons on the ladder. The nearest-neighbour interaction, equation
(4), is found as v = Vc − Ep/2 if two polarons are on different sides of the ladder, and
v = Vc −Ep/4 if both polarons are on the same side. The attractive interaction is provided via
the displacement of the lattice sites which are the common nearest neighbours to both polarons,
under the condition that the angle φ between the directions pointing from those sites to the
two polarons is <π/2. There are two such nearest neighbours for the intersite bipolarons of
type A or B (figure 2(c)), but there is only one common nearest neighbour for the bipolaron
C (figure 2(d)). When Vc > Ep/2, there are no bound states and the multi-polaron system is
a 1D Luttinger liquid. However, when Vc < Ep/2 and consequently v < 0, the two polarons
are bound into an intersite bipolaron of type A or B.

It is quite remarkable that the bipolaron tunnelling appears already in the first order in
polaron hopping Hpert as was anticipated in [16]. This case is different from both that of
the on-site bipolaron discussed a long time ago [23], and that of the intersite chain bipolaron
discussed recently [21], where the bipolaron tunnelling was of the second order in t . Indeed,
in the first order in Hpert one should consider only the lowest-energy degenerate configurations
A and B and discard the processes that involve all other configurations. The result of such a
projection is a bipolaronic Hamiltonian:

Hb = (Vc − 5
2Ep)

∑
n

[A†
nAn + B†

nBn] − t ′
∑

n

[B†
nAn + B

†
n−1An + h.c.], (15)

where An = cnpn and Bn = pncn+1. Fourier transformation yields the bipolaron energy
spectrum:

E2(k) = Vc − 5
2Ep ± 2t ′ cos(k/2). (16)

There are two bipolaron bands with a combined width of 4t ′. The bipolaron binding energy is

� ≡ 2E1(0) − E2(0) = Ep

2
− Vc − 2t − 4t ′. (17)

The bipolaron mass near the bottom of the lowest band is m∗∗ = 2/t ′. Neglecting t and t ′

relative to Ep and Vc we arrive at the following conclusion. When Vc < Ep/2, two polarons
form a bipolaron with effective mass m∗∗ ≈ (4 + exp Ep

8ω
)m∗

l . The numerical coefficient 1
8

ensures that m∗∗ remains of the order of m∗ even at large Ep.
In models with strong intersite attraction there is a possibility of clustering. In a way

similar to the two-particle case above, the lowest energy of n polarons placed on the nearest
neighbours of the ladder is found as En = (2n − 3)Vc − 6n−1

4 Ep, for any n � 3. There are no
resonating states for an n-polaron nearest-neighbour configuration if n � 3. Therefore there
is no first-order kinetic energy contribution to their energy. En should be compared with the
energy E1 + (n−1)E2/2 of (n−1)/2 widely separated bipolarons and a single polaron for odd
n � 3, or with the energy of n widely separated bipolarons for even n � 4. ‘Odd’ clusters are
stable at Vc < n

6n−10Ep, and ‘even’ cluster are stable at Vc < n−1
6n−12Ep. Here we have neglected

the kinetic energy of polarons and bipolarons. As a result, we find that bipolarons repel each
other and single polarons at Vc > 3

8Ep. If Vc is < 3
8Ep, then immobile bound clusters of three

and more polarons could form. We would like to stress that at distances much larger than the
lattice constant the polaron–polaron interaction is always repulsive [16], and the formation of
infinite clusters, stripes, or strings is impossible [24]. Combining the condition of bipolaron
formation and that of the instability of larger clusters, we obtain a window of parameters:

3
8Ep < Vc < 1

2Ep, (18)

within which the ladder is a bipolaronic conductor. Outside this window the ladder is either a
charge-segregated insulator (small Vc) or a one-dimensional (1D) Luttinger liquid (large Vc).
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Figure 3. A fragment of the perovskite layer.

Our consideration is directly related to doped cuprates. Here we consider a two-
dimensional lattice of ideal octahedra that can be regarded as a simplified model of the copper–
oxygen perovskite layer; see figure 3. The lattice period is a = 1 and the distance between
the apical sites and the central plane is h = a/2 = 0.5. All in-plane atoms, both copper and
oxygen, are static, but apical oxygens are independent three-dimensional isotropic harmonic
oscillators. Because of poor screening, the hole–apical interaction is purely Coulombic,
gα(m−n) = κα/|m−n|2, α = x, y, z. To account for the experimental fact that z-polarized
phonons couple with the holes more strongly than the others [3], we choose κx = κy = κz/

√
2.

The direct hole–hole repulsion is Vc(n − n′) = Vc/
√

2
|n−n′| , so the repulsion between two holes

in the NN configuration is Vc. We also include the bare NN hopping TNN , the next-nearest-
neighbour (NNN) hopping across copper TNNN , and the NNN hopping between the pyramids
T ′

NNN . According to equation (3), the polaron shift is given by the lattice sum (after summation
over polarizations):

Ep = 2κ2
xω

∑
m

(
1

|m − n|4 +
h2

|m − n|6
)

= 31.15κ2
xω, (19)

where the factor 2 accounts for the two layers of apical sites. (For reference, the Cartesian
coordinates are n = (nx +1/2, ny +1/2, 0), m = (mx, my, h); nx, ny, mx, my being integers.)
The polaron–polaron attraction is

Vpa(n − n′) = 4ωκ2
x

∑
m

h2 + (m − n′) · (m − n)

|m − n′|3|m − n|3 . (20)

Performing the lattice summations for the NN, NNN, and NNN′ configurations one finds Vpa =
1.23Ep, 0.80Ep, and 0.82Ep, respectively. Substituting these results in equations (4) and (9)
we obtain the full interpolaron interaction: vNN = Vc − 1.23Ep, vNNN = Vc/

√
2 − 0.80Ep,

v′
NNN = Vc/

√
2 − 0.82Ep, and the mass renormalization exponents: G2

NN = 0.38(Ep/ω),
G2

NNN = 0.60(Ep/ω), and G′2
NNN = 0.59(Ep/ω).

Let us now discuss different regimes of the model. At Vc > 1.23Ep, no bipolarons are
formed and the system is a polaronic Fermi liquid. The polarons tunnel in the square lattice
with NN hopping t = TNN exp(−0.38Ep/ω) and NNN hopping t ′ = TNNN exp(−0.60Ep/ω).
(Since G2

NNN ≈ G′2
NNN one can neglect the difference between NNN hoppings within and

between the octahedra.) The single-polaron spectrum is therefore

E1(k) = −Ep − 2t ′[cos kx + cos ky] − 4t cos(kx/2) cos(ky/2). (21)
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Figure 4. Four degenerate bipolaron configurations A, B, C, and D. Some single-polaron hoppings
are indicated by arrows.

The polaron mass is m∗ = 1/(t + 2t ′). Since in general t > t ′, the mass is mostly determined
by the NN hopping amplitude t . If Vc < 1.23Ep, then intersite NN bipolarons form. The
bipolarons tunnel in the plane via four resonating (degenerate) configurations A, B, C, and D;
see figure 4. In the first order in Hpert one should retain only these lowest-energy configurations
and discard all the processes that involve configurations with higher energies. The result of
such a projection is a bipolaron Hamiltonian:

Hb = (Vc − 3.23Ep)
∑

l

[A†
l Al + B

†
l Bl + C

†
l Cl + D

†
l Dl]

− t ′
∑

l

[A†
l Bl + B

†
l Cl + C

†
l Dl + D

†
l Al + h.c.]

− t ′
∑

n

[A†
l−xBl + B

†
l+yCl + C

†
l+xDl + D

†
l−yAl + h.c.], (22)

where l numbers octahedra rather than individual sites, x = (1, 0), and y = (0, 1). A Fourier
transformation and diagonalization of a 4 × 4 matrix yield the bipolaron spectrum:

E2(k) = Vc − 3.23Ep ± 2t ′[cos(kx/2) ± cos(ky/2)]. (23)

There are four bipolaronic subbands combined in a band of width 8t ′. The effective mass of the
lowest band is m∗∗ = 2/t ′. The bipolaron binding energy is � = 1.23Ep −Vc −4(2t + t ′). As
in the ladder, the bipolaron already moves in the first order in polaron hopping. This remarkable
property is entirely due to the strong on-site repulsion and long-range el–ph interaction that
leads to a non-trivial connectivity of the lattice. This situation is unlike all other models
studied previously. (Usually, the bipolaron moves only in the second order in polaron hopping
and therefore is very heavy.) In our model, this fact combines with a weak renormalization
of t ′ yielding a superlight bipolaron with mass m∗∗ ∝ exp(0.60Ep/ω). We recall that in
the Holstein model m∗∗ ∝ exp(2Ep/ω). Thus the mass of the Fröhlich bipolaron scales
approximately as a cube root of that of the Holstein one.

At even stronger el–ph interaction, Vc < 1.16Ep, NNN bipolarons become stable. More
importantly, holes can now form three- and four-particle clusters. The dominance of the
potential energy over kinetic energy in Hamiltonian (10) enables us to readily investigate
these many-polaron cases. Three holes placed within one oxygen square have four degenerate
states with energy 2(Vc − 1.23Ep) + Vc/

√
2 − 0.80Ep. The first-order polaron hopping

processes mix the states resulting in a ground-state linear combination with energy E3 =
2.71Vc − 3.26Ep −

√
4t2 + t ′2. It is essential that between the squares such triads could

move only in higher orders in polaron hopping. In the first order, they are immobile. A
cluster of four holes has only one state within a square of oxygen atoms. Its energy is
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Figure 5. The phase diagram of the Fröhlich–Coulomb model. The model is a polaronic Fermi
liquid for the strong Coulomb repulsion, a bipolaronic HTSC for the intermediate Coulomb
repulsion, and a charge-segregated insulator for the weak repulsion.

E4 = 4(Vc − 1.23Ep) + 2(Vc/
√

2 − 0.80Ep) = 5.41Vc − 6.52Ep. This cluster as well
as all the bigger ones are also immobile in the first order of polaron hopping. We conclude
that at Vc < 1.16Ep the system quickly becomes a charge-segregated insulator.

The fact that within the window 1.16Ep < Vc < 1.23Ep there are no bound states of three
or more polarons means that bipolarons repel each other. The system is effectively the charged
Bose gas which is a well known superconductor [7]. The superconductivity window that we
have found is quite narrow (see figure 5). This indicates that the superconducting state in such
systems is a subtle phenomenon which requires a fine balance between electronic and ionic
interactions. Too strong el–ph interaction leads to clustering, while too weak interaction cannot
bind the carriers and the superconductivity is at best of BCS type. These considerations may
provide additional insight into the uniqueness of one particular structure, the copper–oxygen
perovskite layer, for HTSC. It also follows from our model that superconductivity should be
very sensitive to any external factor that affects the balance between Vc and Ep. For instance,
pressure changes the octahedra geometry and hence Ep and Vpa. Chemical doping enhances
internal screening and consequently reduces Ep.

We now assume that the superconductivity condition is satisfied and show that our
Fröhlich–Coulomb model possesses many key properties of the underdoped cuprates. The
bipolaron binding energy � should manifest itself as a normal-state pseudogap with size of
approximately half of � [7]. Such a pseudogap was indeed observed in many cuprates. In
contrast with the case for the BCS superconductor, the symmetry of the pseudogap might differ
from the symmetry of the superconducting order parameter, which depends on the bipolaronic
band dispersion. The symmetry of the order parameter was found to be d wave [25], while the
former is an anisotropic s wave, in accordance with many experimental observations. There
should be a strong isotope effect on the (bi)polaron mass because t, t ′ ∝ exp(−constant×√

M).
Therefore the replacement of O16 by O18 increases the carrier mass [26]. Such an effect
was observed in the London penetration depth of the isotope-substituted samples [1]. The
mass isotope exponent, αm = d ln m∗∗/d ln M , was found to be as large as αm = 0.8 in
La1.895Sr0.105CuO4. Our theoretical exponent is αm = 0.3Ep/ω, so the bipolaron mass
enhancement factor is exp(0.6Ep/ω) � 5 in this material. With the bare hopping integral
TNNN = 0.2 eV we obtain the in-plane bipolaron mass m∗∗ � 10 me. Calculated with this
value, the in-plane London penetration depth, λab = [m∗∗/8πne2]1/2 � 316 nm (n the hole
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density), agrees well with the measured one, λab � 320 nm. Taking into account the c-axis
tunnelling of bipolarons, the critical temperature of their Bose–Einstein condensation can be
expressed in terms of the experimentally measured in-plane and c-axis penetration depths, and
the in-plane Hall constant RH as Tc ≈ 1.64(eRH/λ4

abλ
2
c)

1/3. Here Tc, eRH , and λ are measured
in K, cm3, and cm, respectively [27]. Using the experimental λab = 320 nm, λc = 4160 nm,
and RH = 4×10−3 cm3 C−1 (just above Tc), one obtains Tc = 31 K in striking agreement with
the experimental value Tc = 30 K. The recent observation of the normal-state diamagnetism
in La2−xSrxCuO4 [28] also fits well the prediction of the bipolaron theory [29]. Many other
features of the bipolaronic (super)conductor, e.g., the unusual upper critical field, electronic
specific heat, optical, ARPES, and tunnelling spectra match those of the cuprates (for a recent
review, see [30]).

Finally, we show that the Fermi energy in all novel superconductors is surprisingly low, of
the order of or even smaller than the most essential optical phonon energy. The band structure
of the cuprates is quasi-two-dimensional with a few degenerate hole pockets. Applying the
parabolic approximation for the band dispersion one obtains the renormalized (polaronic)
Fermi energy as

EF = πnid

m∗
i

, (24)

where d is the interplane distance, and ni, m
∗
i are the density of holes and their effective mass

in each of the hole subbands i renormalized by the el–ph (and electron–electron) interactions.
One can express the renormalized band-structure parameters through the in-plane London
penetration depth at T = 0, measured experimentally:

1

λ2
H

= 4πe2
∑

i

ni

m∗
i

. (25)

As a result, one obtains the parameter-free expression for the Fermi energy as

EF = d

4ge2λ2
H

, (26)

where g is the degeneracy of the spectrum. The degeneracy g in the cuprates may depend
on the doping. In underdoped cuprates one expects four hole pockets inside the Brillouin
zone (BZ) due to the Mott–Hubbard gap. If the hole band minima are shifted with doping to
BZ boundaries, the spectrum will be twofold degenerate, so g � 2 in cuprates. Because
equation (26) does not contain any other band-structure parameters, the estimate of EF

using this equation does not depend very much on the parabolic approximation for the band
dispersion. Generally, the ratios n/m in equations (24) and (25) are not necessarily the
same. The ‘superfluid’ density in equation (25) might be different from the total density
of delocalized carriers in equation (24). However, in a translationally invariant system they
must be the same [31]. This is true even in the extreme case of a pure two-dimensional
superfluid, where quantum fluctuations might be important. One can obtain a reduced value
of the zero-temperature superfluid density only in the dirty limit l � ξ(0) where ξ(0) is the
zero-temperature coherence length. The latter was measured directly in cuprates as the size
of the vortex core. It is about 10 Å or even less. In contrast, the mean free path was found
to be surprisingly large at low temperatures, l ∼ 100–1000 Å. Hence, the cuprates are in the
clean limit, l  ξ(0), so the parameter-free expression for EF , equation (26), is perfectly
applicable.

Equation (26) yields EF � 100 meV for the cuprates, especially if the degeneracy g � 2
is taken into account. A few examples are La1.85Sr0.15CuO4 (Tc = 37 K, λH = 240 nm [27],
d = 0.66 nm) with gEF = 77 meV, YBa2Cu3O6.92 (Tc = 91.5 K , λH = 186 nm [27],
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d = 0.43 nm) with gEF = 84 meV. That should be compared with the characteristic phonon
frequency, which is estimated as the plasma frequency of oxygen ions, ω = (4πZ2e2N/M)1/2.
One obtains ω = 84 meV with Z = 2, N = 6/Vcell, M = 16 au for YBa2Cu3O6. Here
Vcell is the volume of the chemical unit cell. The low Fermi energy EF � ω is a serious
problem for the Migdal–Eliashberg approach. The non-crossing diagrams cannot be treated
as vertex corrections because ω/EF � 1, since they are comparable to the standard terms.
On the contrary, the estimate of EF supports further the non-adiabatic (bi)polarons as the
(super)carriers in high-Tc superconductors.

In conclusion, we have introduced a realistic multi-polaron model of high-temperature
superconductivity with the strong Fröhlich and Coulomb long-range interactions. We have
described a simple procedure of calculating polaron and bipolaron masses, identified and
quantitatively analysed a new resonance mechanism of bipolaron mass reduction, and found
the conditions for clustering of holes and the window for their high-Tc superconductivity. The
model possesses a rich phase diagram in the coordinates of the intersite Coulomb repulsion
Vc and the polaronic (Franck–Condon) level shift Ep; see figure 5. The ground state is a
polaronic Fermi (or Luttinger) liquid for the strong Coulomb repulsion, a bipolaronic HTSC for
the intermediate Coulomb repulsion, and a charge-segregated insulator for the weak repulsion.
Remarkably, the intersite bipolarons in the superconducting phase are ‘superlight’, propagating
coherently with about the same mass as single polarons. In our model the bipolarons already
tunnel in the first order in polaron tunnelling, which results in the bipolaron mass scaling
linearly with the polaron hopping integral. Many properties of the model in the superconducting
phase match those of the cuprates. We argue that a surprisingly low Fermi energy and the
strong unscreened coupling of carriers with high-frequency optical phonons is the origin of
the high-temperature superconductivity.
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